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Abstract

Diabetic retinopathy (DR) is a leading cause of pre-
ventable blindness globally, affecting millions of diabetics
worldwide. Early detection is crucial for patient outcomes,
but many underresourced regions lack access to qualified
ophthalmologists for timely screening. This paper presents
a new approach to automated DR severity classification
from retinal fundus photographs using BiomedCLIP, a mul-
timodal biomedical foundation model pretrained on 15 mil-
lion clinical image-text pairs. We combine BiomedCLIP
with parameter-efficient fine-tuning techniques, specifically
Low-Rank Adaptation (LoRA), to create a computation-
ally efficient model that leverages pre-existing biomedical
knowledge while requiring minimal training resources, a
common problem in many regions of the world with the
most DR patients. Our approach addresses the challenge
of five-level DR severity classification (No DR, Mild, Mod-
erate, Severe, and Proliferative DR) using the Kaggle Di-
abetic Retinopathy Detection dataset, which contains ap-
proximately 88,000 high-resolution retinal images. We im-
plement specialized preprocessing techniques to handle the
dataset’s challenges, including class imbalance and image
quality variations. LoRA significantly improved diabetic
retinopathy classification performance over the zero-shot
BiomedCLIP baseline, achieving an F1 score of 20.0% with
only a modest increase in inference time per image and
memory usage. BitFit achieved the highest raw accuracy
(93.7%) but suffered from class collapse, overpredicting the
majority class and limiting its clinical applicability.

1. Introduction

Diabetic retinopathy (DR) represents one of the most
critical healthcare challenges of the present, affecting over
103.12 million individuals worldwide (8). It is a lead-
ing cause of preventable blindness globally. The condi-
tion is a result of damaged blood vessels in the retina due
to long-term high blood sugar levels. While early detec-

tion and treatment can prevent vision loss in over 90% of
cases, many patients in underresourced regions lack ac-
cess to timely, effective screening due to a global short-
age of qualified ophthalmologists. For instance, in China,
the patient-to-ophthalmologist ratio is 3000:1, making tra-
ditional screening infeasible at scale (2).

Recent advances in deep learning have shown a great
deal of promise in automating DR detection from retinal
fundus photos. Gulshan et al. (2016) (4) showed that con-
volutional neural networks (CNNs) could achieve perfor-
mance comparable to retina specialists. However, these
models require a large amount of computational resources
for training and deployment, which limits their accessibility
in settings with resource constraints.

The computational requirements of training deep learn-
ing models from scratch present a significant barrier to
widespread adoption, particularly in regions with limited
access to high-performance computing infrastructure. Ad-
ditionally, traditional deep learning approaches often re-
quire large amounts of labeled data, which can be difficult
and expensive to obtain in specialized medical domains like
ophthalmology.

In this project, we propose a new approach leveraging the
BiomedCLIP model, a multimodal biomedical foundation
model that has been pretrained on 15 million clinical image-
text pairs. We combine this approach with parameter-
efficient fine-tuning techniques. By using BiomedCLIP’s
biomedical background knowledge and applying Low-Rank
Adaptation (LoRA), we aim to achieve strong DR classifi-
cation performance while greatly reducing computational
resources compared to training models from scratch.

Our approach addresses several key challenges in auto-
mated DR detection: (1) The need for specialized domain
knowledge in understanding retinal images; (2) the compu-
tational cost of training deep learning models from scratch;
and (3) the variability in image quality and characteristics
due to different imaging equipment and protocols.

Our contributions include: (1) a novel application of
BiomedCLIP to the task of DR severity classification; (2) an
efficient fine-tuning approach using LoRA that significantly
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reduces computational requirements; (3) a comprehensive
evaluation of different prompting strategies for zero-shot
and few-shot learning in medical image classification; and
(4) a specialized preprocessing pipeline designed to address
the unique challenges of retinal fundus imagery.

We hope to develop a model that can be deployed in
resource-constrained settings, ideally expanding access to
DR screening in regions where specialized ophthalmologi-
cal expertise is limited.

2. Related Works
2.1. Deep Learning for Diabetic Retinopathy Detec-

tion

The application of deep learning to DR detection has
been an active area of research for several years. The land-
mark study by Gulshan et al. (2016) (4) demonstrated that
a CNN trained on a large dataset of retinal images could
achieve sensitivity and specificity comparable to ophthal-
mologists for detecting referable DR. Since then, numerous
approaches have been proposed to improve performance
and address various challenges in this domain.

Gargeya and Leng (2017) (3) developed a CNN-based
system that achieved high accuracy in distinguishing be-
tween DR and non-DR cases while also providing a visu-
alization of the regions that contributed most to the clas-
sification decision. Abramoff et al. (2018) (1) created
an FDA-approved autonomous AI system for DR detection
that achieved high sensitivity and specificity, marking an
important milestone in the clinical application of these tech-
nologies.

More recent work has focused on improving model per-
formance through architectural innovations and novel train-
ing approaches. Krause et al. (2018) (6) demonstrated that
a hybrid approach combining network-based and feature-
based classifiers could achieve better performance than ei-
ther approach alone. Wang et al. (2020) (10) proposed a
zoom-in network that mimics the diagnostic process of oph-
thalmologists by focusing on suspicious regions.

While these approaches have shown impressive results,
they typically require substantial computational resources
for training and fine-tuning, limiting their applicability in
resource-constrained settings.

2.2. Vision-Language Models in Medical Imaging

The emergence of vision-language models (VLMs) has
opened new possibilities for medical image analysis. These
models, trained on large-scale image-text pairs, learn to
align visual and textual representations in a shared embed-
ding space, enabling zero-shot and few-shot learning capa-
bilities.

CLIP (Contrastive Language-Image Pre-training) by
Radford et al. (2021) (7) demonstrated impressive zero-

shot image classification capabilities by learning to asso-
ciate images with natural language descriptions via cosine
similarity score computed on text and image embeddings in
a model’s shared space.

Figure 1. Summary of CLIP approach, adapted from (7)

This approach has been adapted to medical domains
through models like MedCLIP (Zhang et al., 2022) (13) and
BiomedCLIP (Zhang et al., 2023) (15), which are trained on
medical image-text pairs from scientific literature and clin-
ical datasets.

BiomedCLIP, in particular, has shown promising results
in various medical imaging tasks, including chest X-ray
interpretation, dermatological condition classification, and
pathology image analysis. By leveraging the biomedical
knowledge encoded in its pre-trained weights, Biomed-
CLIP can achieve strong performance on specialized medi-
cal tasks with minimal fine-tuning.

2.3. Parameter-Efficient Fine-Tuning

As foundation models have grown in size and complex-
ity, parameter-efficient fine-tuning techniques have emerged
as a way to adapt these models to specific tasks without
updating all parameters. This approach significantly re-
duces computational requirements while maintaining per-
formance comparable to full fine-tuning.

Low-Rank Adaptation (LoRA), proposed by Hu et al.
(2022) (5), is one such technique that has gained popular-
ity for its efficiency and effectiveness. LoRA works by in-
serting trainable low-rank matrices into the attention layers
of transformer-based models, reducing the number of train-
able parameters by orders of magnitude compared to full
fine-tuning.

Another parameter-efficient approach is BitFit (12),
which restricts fine-tuning to only the bias terms within a
pre-trained model while keeping all other weights frozen.
Despite its simplicity, BitFit has demonstrated surprising
effectiveness in a variety of NLP tasks, achieving compet-
itive results with a minimal number of trainable parame-
ters. Its lightweight nature makes it particularly appealing
for scenarios with limited computational resources or strict
deployment constraints. However, its use in computer vi-
sion, and especially in medical imaging tasks such as dia-
betic retinopathy (DR) detection, has not been thoroughly
explored. Understanding how such minimal adaptations af-
fect visual representations in high-stakes, class-imbalanced



settings like DR classification is an important and under-
investigated research direction.

Our work builds upon these advances by combining the
domain-specific knowledge of BiomedCLIP with the ef-
ficiency of LoRA to create a computationally accessible
approach to DR classification that maintains high perfor-
mance. This combination addresses the dual challenges
of model performance and resource constraints that have
limited the widespread deployment of deep learning-based
DR screening systems. By leveraging the biomedical
knowledge encoded in BiomedCLIP’s pre-trained weights,
BiomedCLIP can achieve strong performance on special-
ized medical tasks with minimal fine-tuning.

3. Data
We use the Diabetic Retinopathy Detection dataset

from Kaggle, which contains approximately 88,000 high-
resolution images of retinal fundi. Due to data limitations,
we used 16,000 photos in total across our train, validation,
and test sets. Each image has been rated professionally by
clinicians on a standard clinical scale of 0-4: 0 - No DR;
1 - Mild DR; 2 - Moderate DR; 3 - Severe DR; 4 - Pro-
liferative DR. The dataset provides both left and right eye
images for each subject, labeled with a subject ID and later-
ality (e.g., ”1 left.jpeg”). This comprehensive dataset repre-
sents a real-world distribution of DR cases, with the major-
ity falling into the ”No DR” category, creating a significant
class imbalance that mirrors clinical reality.

3.1. Dataset Challenges

This dataset has several challenges that make it suitable
for real-world applications.

Images come from different models and types of cam-
eras, resulting in large variability in visual appearance, con-
trast, brightness, and color balance.

Some images follow anatomical orientation (macula on
the left, optic nerve on the right for the right eye), while oth-
ers are inverted (as seen through a microscope condensing
lens during live examinations). This can be identified by ei-
ther the position of the macula relative to the optic nerve or
the presence of notches (square, triangle, or circle) on the
side of the image that determines the orientation.

Like most real-world medical imaging datasets, the im-
ages contain many artifacts and quality issues; some may be
out of focus, underexposed, overexposed, or contain other
visual noise such as dust on the lens or eyelash artifacts.

There is significant class imbalance, with the majority of
images falling into the ”No DR” category, which compli-
cates the learning process for more severe cases. This im-
balance reflects the real-world distribution of DR severity
but poses challenges for model training.

Images differ in their field of view, with some capturing
a wider area of the retina and others focusing more narrowly

on specific regions.

3.2. Preprocessing Pipeline

To address these challenges, we implemented a custom
RetinopathyDataset class that handles the loading, prepro-
cessing, and batching of the images. Our preprocessing
pipeline includes several key steps:

Color Correction: BGR to RGB conversion to normal-
ize color representation across different camera systems.

Resizing: All images are resized to the standard 224 ×
224 resolution required by BiomedCLIP’s vision encoder.

Contrast Enhancement: We apply a combination of
Gaussian blur and weighted addition to improve visibility
of subtle retinal features, particularly microaneurysms and
small hemorrhages that are critical for early DR detection.

Normalization: Images are normalized to the [0, 1]
range for compatibility with deep learning frameworks and
to standardize input distribution.

Data Augmentation: During training, we apply vari-
ous data augmentation techniques including contrast adjust-
ments and Gaussian blurring.

4. Methods
4.1. BiomedCLIP Baseline

We employ BiomedCLIP (14) as our baseline, a biomed-
ical, foundation, vision-language model (VLM), trained on
15 million figure-caption pairs of diverse biomedical im-
age types (i.e., radiography, histology), from PubMed, ca-
pable of performing a multitude of vision-language process-
ing (VLP) tasks, including image classification. Biomed-
CLIP leverages PubMedBERT as the text encoder and Vi-
sion Transformer as its image encoder.

To enable BiomedCLIP to perform zero-shot DR classi-
fication, we designed four prompt sets encapsulating vary-
ing levels of domain specificity and linguistic detail, corre-
sponding to the five DR severity levels: basic, technical,
clinical, and simple. Technical and clinical prompts were
derived from manually parsing medical literature (9; 11).

Set Class 0 Prompt
Basic This is a retinal image showing no diabetic

retinopathy
Technical Grade 0 DR: normal retina with no abnor-

malities
Clinical Normal fundus: clear vessels, normal optic

disc, no pathologies
Simple healthy retina

Table 1. Class 0 prompts across prompt sets.

Each prompt was tokenized with BiomedCLIP’s tok-
enizer and normalized, resulting in unit length embeddings
to support cosine similarity computation with image em-
beddings. Image embeddings were computed in correspon-



dence with our custom preprocessing pipeline because we
wanted to precisely control image augmentation and nor-
malization using torchvision transforms.

To assign class predictions, we compute cosine similar-
ity between each embedded image and embedded text class
vectors within each prompt set. Similarity was scaled by
the learned logit scale from the BiomedCLIP model, then
passed through softmax to obtain a probability distribu-
tion over the five classes. The class with the highest sim-
ilarity score was selected as the predicted label, reflecting
the most semantically aligned diagnosis based on Biomed-
CLIP’s shared vision-language embedding space.

Training Configuration. While BiomedCLIP is primarily
evaluated in a zero-shot setting, we fine-tuned LoRA and
BitFit variants using a custom training loop. For evalua-
tion, we used a batch size of 64 and automatic mixed pre-
cision. For LoRA and BitFit tuning, models were trained
for 1 epoch with a batch size of 32 using AdamW optimizer
with a learning rate of 1 × 10−5. The logit scale used in
cosine similarity was fixed to 1.0 during training and evalu-
ation. Peak GPU memory usage and inference time per im-
age were measured using PyTorch’s CUDA profiling tools
and psutil on CPU fallback.

4.2. Implementing Parameter-Efficient Fine-
Tuning

4.2.1 BiomedCLIP with LoRA

Low-Rank Adaptation (LoRA) inserts trainable low-rank
matrices into existing linear layers of a neural network,
allowing efficient adaptation without modifying the full
weight matrices. Instead of updating the large pre-trained
matrices, LoRA learns two smaller matrices that approxi-
mate the desired weight updates through a low-rank decom-
position. This significantly reduces the number of trainable
parameters and makes training more resource-efficient. Be-
low is a diagram of how LoRA works.

Figure 2. LoRA, adapted from (5)

For BiomedCLIP, we injected LoRA modules into the
attn.qkv and attn.proj layers of the first 12 trans-
former blocks in the visual trunk. These components form

the core of the self-attention mechanism, which is important
for extracting visual patterns from retinal imagery. Modify-
ing only these attention submodules lets us specialize the
model to retinal imagery without getting in the way of the
broader mechanism that BiomedCLIP helps encode.

We chose this configuration because prior work shows
LoRA is especially effective when applied to attention mod-
ules, and early and middle layers often capture domain-
specific low-to-mid-level visual features relevant for med-
ical tasks.

LoRA Hyperparameters:

• LoRA rank (r): 16

• LoRA scaling factor (alpha): 32

• Target modules: attn.qkv, attn.proj

• Dropout: 0.05

• Optimizer: AdamW, learning rate: 1× 10−5

• Epochs: 1

• Batch size: 32

4.2.2 BiomedCLIP with BitFit

BitFit (Bias Term Fine-Tuning) is a minimalistic fine-tuning
strategy where only the bias terms in the model are updated,
and all other weights are kept frozen. This drastically re-
duces the number of trainable parameters (typically to less
than 1%) while still enabling strong task-specific adapta-
tion.

In our implementation, we changed all bias pa-
rameters across the BiomedCLIP transformer using
this rule: param.requires grad = ".bias" in
name. This updated the biases in both linear and normal-
ization layers across the transformer blocks.

BitFit served as a lightweight benchmark to test whether
even minimal adaptation could improve over zero-shot
prompting. It is particularly well-suited for deployment sce-
narios with stringent memory or computation constraints,
such as edge devices in underresourced clinics.

BitFit Hyperparameters:

• Trainable parameters: Only bias terms

• Optimizer: AdamW, learning rate: 1× 10−5

• Epochs: 1

• Batch size: 32

Evaluation was conducted on a held-out dataset of 8,407
labeled retinal images using a batch size of 64. Both in-
ference time per image and peak GPU memory usage were



measured and compared across BiomedCLIP, LoRA, and
BitFit variants. Training was done on an equivalently-sized
dataset, and cross-validation in batches of 64 images was
done.

5. Experiments and Analysis

5.1. Performance Summary and Model Behavior

Both LoRA and BitFit show clear improvements over
the zero-shot BiomedCLIP baseline in terms of raw clas-
sification accuracy. LoRA’s performance was distinguished
by its superior balance across metrics, particularly its F1
score and precision, which are crucial in the medical do-
main where both false positives and false negatives carry
significant risk. Specifically, LoRA achieved an average
accuracy of 92.7%, precision of 21.9%, recall of 18.4%,
and the highest F1 score at 20.0%, making it the most bal-
anced performer. Its selective adaptation of the attn.qkv
and attn.proj modules appears to equip the model with
an enhanced ability to discern finer distinctions in pathol-
ogy, such as differentiating microaneurysms (mild DR)
from hemorrhages and venous beading (moderate to severe
DR). The use of rank-16 low-rank matrices allowed suf-
ficient representational flexibility without incurring a high
computational cost. Although its Cohen’s kappa was rela-
tively low (0.007), this is partially expected in highly imbal-
anced multi-class problems, and still marked an improve-
ment in calibrated agreement beyond chance compared to
other methods.

BitFit, on the other hand, achieved slightly higher over-
all accuracy (93.7%, the highest among all methods) but
exhibited stark over reliance on the majority class . Since
it only allows bias terms to be updated, the model likely
adjusts its outputs through coarse-grain shifts in layer out-
puts rather than changing internal representations. While
this can improve surface-level performance on imbalanced
datasets, it falls short in sensitivity to rare classes: a critical
failure in clinical settings. BitFit’s recall was 20.0%, and
its precision slightly lower than LoRA’s at 19.2%. The re-
sulting F1 score of 19.4% is solid, but still behind LoRA.
Most notably, its kappa score dropped to 0.002, revealing
a tendency to inflate accuracy by overpredicting the ma-
jority class—namely “No DR”—without improving inter-
class reliability. This behavior shows a larger theme: not
all parameter-efficient fine-tuning strategies offer clinically
efficient trade-offs. BitFit may be more appropriate in tasks
with high label homogeneity but underperforms in nuanced
multi-class settings like DR classification.

To better illustrate the trade-off between adaptation per-
formance and parameter efficiency, we plot the F1 score of
each model against the number of trainable parameters on
a logarithmic scale. This visualization clearly demonstrates
that LoRA offers the best balance, achieving the highest F1

score with significantly fewer trainable parameters than the
original BiomedCLIP. BitFit, while more efficient in param-
eter count, lags slightly in F1 score, highlighting the cost of
its minimalism. The original model, despite its size, per-
forms worst in terms of both F1 score and parameter effi-
ciency.

Prompt-wise Performance Comparison. Given that our
models rely on text-image alignment for classification,
we evaluate how different prompt formulations influence
downstream performance. We tested each model across
four prompt sets—basic, technical, clinical, and sim-
ple—each representing a different linguistic register or do-
main specificity:

• Basic: general language, e.g., “retinal image showing
mild diabetic retinopathy”

• Technical: ophthalmology-style grades, e.g., “Grade 2
diabetic retinopathy...”

• Clinical: includes anatomical details, e.g., “dot/blot
hemorrhages...”

• Simple: minimal phrasing, e.g., “retina with mild dia-
betic retinopathy”

Original BiomedCLIP: The zero-shot baseline was
highly sensitive to prompt wording. Accuracy varied from
16.5% (basic) to 72.0% (technical), indicating that com-
plex prompts can partially activate relevant latent knowl-
edge, even without fine-tuning. However, class-specific re-
call remained poor across all prompts, with 0.0% sensitiv-
ity for Class 2 and above.

LoRA: This model demonstrated relative stability across
prompts, with accuracies clustered tightly: 92.7% (simple)
to 92.8% (technical). However, we observed a slight im-
provement in minority class sensitivity under technical and
clinical prompts—for example, Class 1 recall improved to
1.5% with the technical set compared to 0.5% with sim-
ple phrasing. This suggests that LoRA’s updated attention
projections are responsive to semantically richer text inputs.

BitFit: In contrast, BitFit was almost entirely prompt-
invariant. Accuracy ranged narrowly between 93.6% and



93.7% across all prompt sets. However, this was a conse-
quence of degeneracy: 97.5% of examples were predicted
as Class 0, regardless of prompt specificity. This implies
that BitFit disregards prompt nuance and learns a coarse de-
fault response based on majority class correlation.

Summary: LoRA’s interaction with prompt phrasing sug-
gests that there is value in exploring prompt optimization
alongside model adaptation. It may be worthwhile to co-
train prompt encoders or use reinforcement learning to se-
lect effective prompt templates dynamically. BitFit’s flat
response highlights the limitations of shallow fine-tuning
when the classification task requires nuanced text-image
grounding.

5.2. Failure Modes and Error Patterns

Each model had distinct failure modes that show their
respective architectural constraints. The Original Biomed-
CLIP model, when used as a zero-shot, frequently defaulted
to high-confidence predictions for the ”No DR” or ”Mild
DR” categories, especially under the simpler prompt sets.
This is likely because the pretrained CLIP-style architecture
was not exposed to images with DR-specific subtleties dur-
ing pretraining. Without fine-tuning, it may rely on broad
text-image alignment priors rather than task-specific visual
grounding. This failure mode manifested as near-zero recall
for Proliferative DR in all prompt variants. Quantitatively,
the original model achieved 54.6% recall for Class 0, 44.8%
for Class 1, but only 1.35%, 2.71%, and 0.0% for Classes
3, 4, and 2 respectively. These patterns reveal that without
adaptation, the model is not capable of picking up subtle or
severe pathologies.

In LoRA, we saw ”soft misclassification” failures. For
example, images of moderate DR were occasionally mis-
classified as mild or severe DR but rarely as ”No DR” or
Proliferative. This suggests that LoRA enabled some level
of intra-class boundary refinement but did not fully resolve
edge cases. While treatment plans may vary largely be-
tween different forms of DR, this is more clinically desir-
able than a larger misclassification; misclassification to an
adjacent stage of DR may mean that, with a little more
training, the model may be nearly deployable. LoRA
achieved 94.5% recall for Class 0, but crucially also non-
zero recall for Class 1 (1.50%), Class 2 (1.00%), and Class
3 (0.50%)—a sharp improvement in distribution over the

original model and a testament to its ability to generalize
beyond dominant patterns.

BitFit had a different and more concerning failure pat-
tern. Despite its high overall accuracy, its per-class per-
formance showed a large collapse into the majority class,
particularly under prompts that lacked highly discriminative
wording. Essentially, BitFit learned a degenerate solution:
predict ”No DR” for most examples. While this inflated
its recall and accuracy scores for Class 0 (97.5%), it ef-
fectively rendered the model unusable for practical screen-
ing, where sensitivity to rare but vision-threatening cases is
paramount. All other classes had recall near zero: Class 1:
0.25%, Classes 2–4: 0.00%.

5.3. Discussion and Interpretability

The performance and failure profiles of these models re-
flect not only differences in trainable parameters but also
differences in how architectural constraints affect training,
results, and how models adapt.

In LoRA, the learnable low-rank matrices directly mod-
ify the projection space of the self-attention mechanism.
This enables LoRA to ”bend” the learned attention dis-
tribution toward underrepresented features such as small
dot hemorrhages or early neovascularization. It also intro-
duces regularization through structural bottlenecks: by lim-
iting updates to low-dimensional subspaces, LoRA likely
avoids overfitting to class imbalance, which helps explain
its stronger generalization to Classes 1–3. Future work
could explore whether extending LoRA to adapt MLP lay-
ers in addition to attention layers would further improve per-
formance, especially for ambiguous or borderline cases.

BitFit’s failure to generalize can be understood by con-
sidering the role of biases in transformer architectures. Bias
terms modulate activations in a uniform, layer-wise manner,
without spatial or semantic specificity. In a vision-language
model like BiomedCLIP, which processes complex retinal
features through multi-headed attention, this kind of param-
eter nudging may be insufficient for learning meaningful
pathology-specific cues. A promising direction for future
work could be ”BitFit++”, which allows biases in key trans-
former blocks and normalization layers to be fine-tuned, or
even includes optional per-layer scaling factors to provide
greater control without sacrificing simplicity.

Another emergent insight deals with prompt set sensitiv-
ity. As discussed earlier, LoRA and the Original model were
both significantly affected by prompt phrasing, whereas
BitFit’s performance was almost entirely invariant—a sign
that it had converged on a one-class solution. LoRA,
on the other hand, appeared to respond to richer prompts
(e.g., technical and clinical), suggesting its attention up-
dates leveraged the detailed semantics of the input text.
This opens a rich direction for future work in co-optimizing
prompts and LoRA layers jointly. Moreover, it signals a po-



tential path toward more interpretable and controllable clin-
ical AI systems, where the language component can act as
an additional lever for tailoring model behavior.

Finally, from a systems perspective, LoRA’s high per-
formance on underrepresented classes in context of GPU
memory footprint, makes it the most viable adaptation for
deployment in under resourced clinical settings. The LoRA
model required ∼1550 MB of memory at inference com-
pared to ∼1693 MB for BitFit, and ∼792 MB for the orig-
inal model. Though the difference between LoRA and Bit-
Fit in terms of memory use seems relatively small, when we
scale and deploy models for widespread use in the context
of global DR detection, this difference will scale to large
amounts of compute. Even though LoRA also requires a
lot more memory than the original model, LoRA performed
significantly better in terms of test set accuracy and combat-
ted class imbalance better. Inference time followed a similar
trend: LoRA averaged 0.14s, BitFit 0.12s, and the original
model just 0.05s. Even though LoRA has a higher infer-
ence time per image compared to BitFit and aa much higher
inference time per image ompared to the original model,
we believe the smaller GPU use compared to BitFit and the
much higher accuracy compared to the original model out-
weighs this. LoRA also can be directly injected in the at-
tention layers, while BitFit only adjusts the bias terms. Pre-
training can help combat LoRA’s relatively large GPU use
and inference time per image. These trade-offs underscore
that LoRA achieves superior performance without imposing
substantial runtime costs.

6. Conclusion
Our study shows the promise of combining founda-

tion models like BiomedCLIP with parameter-efficient fine-
tuning techniques for diabetic retinopathy classification
in resource-constrained settings. LoRA and BitFit, two
lightweight adaptation methods, showed distinct perfor-
mances when applied to this complex multi-class medical
task. LoRA, by injecting low-rank matrices directly into
the attention layers, achieved a notable balance between
overall accuracy and sensitivity to minority classes. Bit-
Fit, while delivering high top-line accuracy, suffered from
class collapse, exposing the limitations of overly simplistic
adaptations in high-stakes, imbalanced domains like medi-
cal imaging. As discussed earlier, BitFit also suffers from

not being able to directly modify the internal structure of the
model; it can only affect the bias terms and not the weights
themselves.

A key insight from our analysis is that not all PEFT
strategies are created equal, and their usefulness is task-
dependent. The subtle improvements in class-specific re-
call achieved by LoRA highlight the importance of adapt-
ing internal attention mechanisms when fine-grained clas-
sification is required. In contrast, BitFit’s reliance on bias-
only updates proved insufficient for modeling nuanced reti-
nal pathologies, suggesting a need for richer parameter up-
dates or hybrid strategies in future work.

Interestingly, despite their intended efficiency, both
LoRA and BitFit required more memory and inference time
per image than the original zero-shot BiomedCLIP model.
LoRA consumed approximately 1550MB of GPU mem-
ory and averaged 0.14 seconds per image, while BitFit re-
quired 1693MB and 0.12 seconds. In contrast, the origi-
nal BiomedCLIP used only 792MB and took 0.05 seconds
per image. This highlights a crucial distinction between
fine-tuning efficiency and deployment efficiency, suggest-
ing the need for inference-optimized PEFT implementa-
tions for low-resource deployments.

In summary, our work offers a scalable, interpretable,
and efficient structure for DR screening that aligns with the
global need for widespread diagnostic tools. The nuances
in performance differences we observed between adapta-
tion methods and prompt styles emphasize the importance
of model design that is closely tied to the context of the
problem (in this case, ophthalmology and medical diag-
nostics). With more time and refinement, approaches like
LoRA-tuned BiomedCLIP could support early detection at
population scale, helping prevent avoidable blindness for
millions worldwide.

7. Contributions

Adi and Kevina split up work in the project evenly. Kev-
ina implemented, trained, and tested the BiomedCLIP base-
line including preprocessing and embedding of images. Adi
did the data integration, LoRA implementation, training,
and testing, and BitFit implementation, training, and test-
ing.
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